Antarctic Ice Sheet fertilises the Southern Ocean

نویسندگان

  • R. Raiswell
  • John M. Reilly
چکیده

Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07–0.2 Tg yr 1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for seasonally very high in situ measurements of PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high measured marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets

[1] The extent and thickness of Antarctic sea ice have important climatic effects on radiation balance, energy transfer between the atmosphere and ocean, and moisture availability. This paper explores the role of sea ice and related feedbacks in the Cenozoic evolution of Antarctic climate and ice sheets, using a numerical climate model with explicit, dynamical representations of sea ice and con...

متن کامل

Climate and biogeochemical response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications for future climate

[1] We study the effects of a massive meltwater discharge from the West Antarctic Ice Sheet (WAIS) during interglacials onto the global climate‐carbon cycle system using the Earth system model of intermediate complexity LOVECLIM. Prescribing a meltwater pulse in the Southern Ocean that mimics a rapid disintegration of the WAIS, a substantial cooling of the Southern Ocean is simulated that is ac...

متن کامل

Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination

Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric...

متن کامل

Antarctic and Southern Ocean influences on Late Pliocene global cooling.

The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expans...

متن کامل

Southern Ocean Overturning Role in Modulating High Southern Latitude Climate and Atmospheric CO2 on Millennial Timescales

During the last glacial period and particularly Marine Isotope Stage 3, North Atlantic Deep Water (NADW) formation weakened significantly on a millennial timescale leading to Greenland stadials (Kissel et al. 2008). Ice core records reveal that each Greenland stadial is associated with a warming over Antarctica, so-called Antarctic Isotope Maximum (AIM) (EPICA and Community Members 2006). Recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013